Name: \qquad
Unit 1 Form B

1. Solve.

Two-eighths of the movies in Beth's collection are action movies. Another $\frac{5}{8}$ of the movies are comedies. What fraction of Beth's movies are either action movies or comedies?

A. ${ }^{\frac{1}{8}}$
B. ${ }^{\frac{3}{8}}$
C. ${ }^{\frac{5}{8}}$
D. $0^{\frac{7}{8}}$
2. Solve.

A farmer has two equal-size fields. He plants corn in $\frac{11}{12}$ of the first field and in $\frac{6}{12}$ of the second field. How much more of the first field does he plant with corn than the second field?

A. ${ }^{\frac{1}{12}}$
B. $0^{\frac{5}{12}}$
C. $0^{\frac{7}{12}}$
D. $0^{\frac{11}{12}}$
3. Solve.

Chris and Dillon ordered a medium pizza. Chris ate ${ }^{\frac{3}{8}}$ of the pizza. Dillon ate ${ }^{\frac{1}{4}}$ of the pizza. What fraction of the pizza did they eat?

A. $\circ^{\frac{5}{8}}$
B. ${ }^{\frac{2}{3}}$
C. $0^{\frac{3}{4}}$
D. $0^{\frac{7}{8}}$
4. Solve.

Endo and Luis are running a race around the school track. At one point During the race, Endo is $\frac{3}{4}$ of the way around the track and Luis is $\frac{2}{3}$ of the way around the track. How much farther around the track was Endo than Luis?

A. $0^{\frac{1}{24}}$
B. $0^{\frac{1}{12}}$
C. $\circ^{\frac{1}{8}}$
D. $\odot^{\frac{1}{6}}$
5. Solve.

Karen ran $3 \frac{7}{10}$ miles to the end of a trail and then ran back. She wrote this equation to show how far she ran in all.
$3 \frac{7}{10}+3 \frac{7}{10}=x$
How far did Karen run in all?
A. ${ }^{6 \frac{3}{10}}$ miles
B. ${ }^{6} \frac{2}{5}$ miles
C. $0^{7 \frac{3}{10}}$ miles
D. ${ }^{7 \frac{2}{5}}$ miles
6.

Which fraction is equivalent to $\frac{5}{8}$?
A. ${ }^{\frac{3}{7}}$
B. ${ }^{\frac{15}{24}}$
C. ${ }^{\frac{6}{9}}$
D. $0^{\frac{10}{4}}$
7.

Which fraction is equivalent to $\frac{4}{16}$?
A. ${ }^{\frac{1}{4}}$
B. $0^{\frac{12}{42}}$
C. $0^{\frac{1}{3}}$
D. ${ }^{\frac{8}{18}}$
8.

Which fraction is equivalent to $\frac{2}{6}$?
A. ${ }^{\frac{2}{12}}$
B. $)^{\frac{4}{24}}$
C. $0^{\frac{4}{12}}$
D. $0^{\frac{2}{3}}$
9. Compare.

Which is true?
A. ${ }^{\frac{3}{5}}>\frac{3}{4}$
B. ${ }^{\frac{4}{7}}>\frac{4}{6}$
C. ${ }^{\frac{5}{8}}<\frac{3}{8}$
D. $0^{\frac{5}{12}<\frac{7}{12}}$
10. Compare.

Which is true?
A. ${ }^{\frac{3}{4}<\frac{8}{11}}$
B. ${ }^{\frac{3}{8}}>\frac{4}{11}$
C. ${ }^{\frac{3}{11}}<\frac{2}{8}$
D. ${ }^{\frac{3}{4}>\frac{11}{12}}$
11. Compare.

Which is true?
A. ${ }^{\frac{4}{9}}>\frac{3}{10}$
B. $\frac{4}{10}<\frac{3}{9}$
C. ${ }^{\frac{3}{4}}>\frac{9}{11}$
D. $\frac{3}{10}<\frac{2}{9}$
12. What is the sum?
$\frac{3}{4}$
$+\frac{5}{8}$
A. ${ }^{\frac{1}{8}}$
B. ${ }^{\frac{3}{8}}$
C. $0^{1 \frac{3}{8}}$
D. ${ }^{3 \frac{1}{8}}$
13. What is the difference?

$$
\begin{array}{r}
\frac{5}{8} \\
-\frac{1}{4} \\
\hline
\end{array}
$$

A. ${ }^{\frac{1}{8}}$
B. ${ }^{\frac{3}{8}}$
C. $8^{\frac{5}{8}}$
D. $0^{\frac{7}{8}}$
14. What is the difference?

$$
\begin{array}{r}
7 \frac{1}{8} \\
-1 \frac{1}{2} \\
\hline
\end{array}
$$

A. ${ }^{5 \frac{3}{8}}$
B. $0^{5 \frac{5}{8}}$
C. ${ }^{6 \frac{3}{8}}$
D. ${ }^{6 \frac{5}{8}}$
15. What is the sum?

$$
\begin{array}{r}
\frac{3}{8} \\
+4 \frac{5}{6} \\
\hline
\end{array}
$$

A. ${ }^{4 \frac{1}{18}}$
B. ${ }^{4 \frac{5}{24}}$
C. ${ }^{5 \frac{1}{18}}$
D. ${ }^{5 \frac{5}{24}}$
16. What is the difference?
$6 \frac{3}{4}$
$-2 \frac{1}{5}$
A. ${ }^{3 \frac{9}{20}}$
B. $0^{3 \frac{11}{20}}$
C. ${ }^{4 \frac{9}{20}}$
D. ${ }^{4 \frac{11}{20}}$
17. What is the sum?
$4 \frac{3}{4}$
$+1 \frac{6}{7}$
A. $5 \frac{17}{28}$
B. ${ }^{6 \frac{11}{28}}$
C. ${ }^{6} \frac{17}{28}$
D. $0^{6 \frac{27}{28}}$
18. Solve.

Monroe's basketball team spent $\frac{1}{6}$ of practice shooting free throws and another $\frac{2}{3}$ of practice working on defense. Which equation can be used to find how much of the practice the team spent shooting free throws or working on defense?
A. ${ }^{\frac{1}{6}}+\frac{1}{6}=\frac{1}{3}$
B. ${ }^{\frac{2}{6}+\frac{1}{3}=\frac{2}{3}}$
C. ${ }^{\frac{2}{3}}-\frac{1}{6}=\frac{1}{2}$
D. ${ }^{\frac{2}{3}+\frac{1}{6}=\frac{5}{6}}$
19. Solve.

It takes Juan's family $3 \frac{3}{4}$ hours to drive to his grandparents' house. That is $1 \frac{7}{10}$ hours longer than it takes them to drive to his aunt's house. How long does it take Juan's family to drive to his aunt's house?
A. $0^{2 \frac{1}{20}}$ hours
B. $0^{2 \frac{3}{40}}$ hours
C. $0^{2 \frac{1}{10}}$ hours
D. $0^{2 \frac{3}{10}}$ hours
20. Solve.

Andy wants to put 8 gallons of water in his new fish tank. He fills a bucket that holds $2 \frac{5}{16}$ gallons and pours it into the tank. Then he adds another full bucket of water. How much more water does Andy need to add to the tank?
A. $०^{1 \frac{1}{16}}$ gallons
B. ${ }^{3 \frac{3}{8}}$ gallons
C. $)^{4 \frac{5}{8}}$ gallons
D. $)^{5 \frac{11}{16}}$ gallons

Unit 1 Form B
ANSWER KEY

1. Solve.

Two-eighths of the movies in Beth's collection are action movies. Another $\frac{5}{8}$ of the movies are comedies. What fraction of Beth's movies are either action movies or comedies?

A. ${ }^{\frac{1}{8}}$
B. ${ }^{\frac{3}{8}}$
C. ${ }^{\frac{5}{8}}$
D. $\stackrel{\circ}{8}^{\frac{7}{8}}$
2. Solve.

A farmer has two equal-size fields. He plants corn in $\frac{11}{12}$ of the first field and in $\frac{6}{12}$ of the second field. How much more of the first field does he plant with corn than the second field?

A. ${ }^{\frac{1}{12}}$
B. $\odot^{\frac{5}{12}}$
C. $0^{\frac{7}{12}}$
D. $0^{\frac{11}{12}}$
3. Solve.

Chris and Dillon ordered a medium pizza. Chris ate $\frac{3}{8}$ of the pizza. Dillon ate $\frac{1}{4}$ of the pizza. What fraction of the pizza did they eat?

A. $9^{\frac{5}{8}}$
B. ${ }^{\frac{2}{3}}$
C. $0^{\frac{3}{4}}$
D. $0^{\frac{7}{8}}$
4. Solve.

Endo and Luis are running a race around the school track. At one point During the race, Endo is $\frac{3}{4}$ of the way around the track and Luis is $\frac{2}{3}$ of the way around the track. How much farther around the track was Endo than Luis?

A. $)^{\frac{1}{24}}$
B. $\odot^{\frac{1}{12}}$
C. $\circ^{\frac{1}{8}}$
D. $\odot^{\frac{1}{6}}$
5. Solve.

Karen ran $3 \frac{7}{10}$ miles to the end of a trail and then ran back. She wrote this equation to show how far she ran in all.
$3 \frac{7}{10}+3 \frac{7}{10}=x$
How far did Karen run in all?
A. ${ }^{6 \frac{3}{10}}$ miles
B. ${ }^{6} \frac{2}{5}$ miles
C. $0^{7 \frac{3}{10}}$ miles
D. ${ }^{7} 7 \frac{2}{5}$ miles
6.

Which fraction is equivalent to $\frac{5}{8}$?
A. ${ }^{\frac{3}{7}}$
B. $\odot^{\frac{15}{24}}$
C. ${ }^{\frac{6}{9}}$
D. $0^{\frac{10}{4}}$
7.

Which fraction is equivalent to $\frac{4}{16}$?
A. $\odot^{\frac{1}{4}}$
B. $0^{\frac{12}{42}}$
C. $0^{\frac{1}{3}}$
D. ${ }^{\frac{8}{18}}$
8.

Which fraction is equivalent to $\frac{2}{6}$?
A. $\frac{2}{12}$
B. $०^{\frac{4}{24}}$
C. $)^{\frac{4}{12}}$
D. $0^{\frac{2}{3}}$
9. Compare.

Which is true?
A. ${ }^{\frac{3}{5}}>\frac{3}{4}$
B. $0^{\frac{4}{7}>\frac{4}{6}}$
C. ${ }^{\frac{5}{8}}<\frac{3}{8}$
D. ${ }^{\frac{5}{12}}<\frac{7}{12}$
10. Compare.

Which is true?
A. ${ }^{\frac{3}{4}<\frac{8}{11}}$
B. $\odot^{\frac{3}{8}}>\frac{4}{11}$
C. ${ }^{\frac{3}{11}}<\frac{2}{8}$
D. ${ }^{\frac{3}{4}>\frac{11}{12}}$
11. Compare.

Which is true?
A. $9 \frac{4}{9}>\frac{3}{10}$
B. $\frac{4}{10}<\frac{3}{9}$
C. ${ }^{\frac{3}{4}}>\frac{9}{11}$
D. $\frac{3}{10}<\frac{2}{9}$
12. What is the sum?
$\frac{3}{4}$
$+\frac{5}{8}$
A. ${ }^{\frac{1}{8}}$
B. ${ }^{\frac{3}{8}}$
C. $)^{1 \frac{3}{8}}$
D. ${ }^{3 \frac{1}{8}}$
13. What is the difference?

$$
\begin{array}{r}
\frac{5}{8} \\
-\frac{1}{4} \\
\hline
\end{array}
$$

A. ${ }^{\frac{1}{8}}$
B. $\odot^{\frac{3}{8}}$
C. $0^{\frac{5}{8}}$
D. $0^{\frac{7}{8}}$
14. What is the difference?

$$
\begin{array}{r}
7 \frac{1}{8} \\
-1 \frac{1}{2} \\
\hline
\end{array}
$$

A. ${ }^{5 \frac{3}{8}}$
B. ${ }^{5}{ }^{5 \frac{5}{8}}$
C. ${ }^{6 \frac{3}{8}}$
D. ${ }^{6 \frac{5}{8}}$
15. What is the sum?

$$
\begin{array}{r}
\frac{3}{8} \\
+4 \frac{5}{6} \\
\hline
\end{array}
$$

A. ${ }^{4 \frac{1}{18}}$
B. ${ }^{4 \frac{5}{24}}$
C. $)^{5 \frac{1}{18}}$
D. $\rho^{5 \frac{5}{24}}$
16. What is the difference?
$6 \frac{3}{4}$
$-2 \frac{1}{5}$
A. ${ }^{3 \frac{9}{20}}$
B. $0^{3 \frac{11}{20}}$
C. ${ }^{4 \frac{9}{20}}$
D. $\% 4 \frac{11}{20}$
17. What is the sum?
$4 \frac{3}{4}$
$+1 \frac{6}{7}$
A. $5 \frac{17}{28}$
B. ${ }^{6 \frac{11}{28}}$
C. $\odot^{6} \frac{17}{28}$
D. ${ }^{6 \frac{27}{28}}$
18. Solve.

Monroe's basketball team spent $\frac{1}{6}$ of practice shooting free throws and another $\frac{2}{3}$ of practice working on defense. Which equation can be used to find how much of the practice the team spent shooting free throws or working on defense?
A. ${ }^{\frac{1}{6}}+\frac{1}{6}=\frac{1}{3}$
B. ${ }^{\frac{2}{6}+\frac{1}{3}=\frac{2}{3}}$
C. ${ }^{\frac{2}{3}-\frac{1}{6}}=\frac{1}{2}$
D. $\odot^{\frac{2}{3}+\frac{1}{6}=\frac{5}{6}}$
19. Solve.

It takes Juan's family $3 \frac{3}{4}$ hours to drive to his grandparents' house. That is $1 \frac{7}{10}$ hours longer than it takes them to drive to his aunt's house. How long does it take Juan's family to drive to his aunt's house?
A. $\stackrel{\circ}{2}^{2 \frac{1}{20}}$ hours
B. $0^{2 \frac{3}{40}}$ hours
C. $0^{2 \frac{1}{10}}$ hours
D. $0^{2 \frac{3}{10}}$ hours
20. Solve.

Andy wants to put 8 gallons of water in his new fish tank. He fills a bucket that holds $2 \frac{5}{16}$ gallons and pours it into the tank. Then he adds another full bucket of water. How much more water does Andy need to add to the tank?
A. $०^{1 \frac{1}{16}}$ gallons
B. ${ }^{3} \frac{3}{8}$ gallons
C. ${ }^{4 \frac{5}{8}}$ gallons
D. $)^{5 \frac{11}{16}}$ gallons

